【算法入门】 有效括号序列|逆波兰表达式求值|点击消除
✅作者简介:热爱后端语言的大学生,CSDN内容合伙人
✨精品专栏:C++面向对象
🔥系列专栏:算法百炼成神
文章目录
- 🔥前言
- 1、AB3 有效括号序列
-
- 1.1、解题思路
- 1.2、代码实现与解析
- 2、AB4 逆波兰表达式求值
-
- 2.1、解题思路
- 2.2、代码实现与解析
- 3、AB5 点击消除
-
- 3.1、解题思路
- 3.2、代码实现与解析
🔥前言
本专栏收录的均为牛客网的算法题目,内含链表、双指针、递归、动态规划、基本数据结构等算法思想的具体运用。牛客网不仅有大量的经典算法题目,也有大厂的面试真题,面试、找工作完全可以来这里找机会。此外,网站内的编码主题多样化,调试功能可运用性强,可谓是非常注重用户体验。这么好的免费刷题网站还不快入手吗,快去注册开启算法百炼成神之路吧!
1、AB3 有效括号序列
题目链接:有效括号序列
题目描述:
1.1、解题思路
采用右括号入栈的思想:
- 对
s
字符串进行遍历,如果是字符'('
、'['
、'{'
那就把其对应的右括号入栈。 - 如果不是这些左括号,那就让该字符与辅助栈顶比较,如果不相等说明不匹配:
- 这里要先判断辅助栈是否为空,若为空,说明先前没有左括号入栈。
- 如果字符与辅助栈顶相等,那就进行出栈操作,最后返回栈的
empty
方法即可。
1.2、代码实现与解析
本题源码:
class Solution { public: /** * * @param s string字符串 * @return bool布尔型 */ bool isValid(string s) { //辅助栈 stack<char> stk; for (int i = 0; i < s.length(); i++) { if (s[i] == '(') stk.push(')'); else if (s[i] == '[') stk.push(']'); else if (s[i] == '{') stk.push('}'); else { if (stk.empty() || s[i] != stk.top()) return false; stk.pop(); } } return stk.empty(); }};
重要注释:
- 辅助栈需要字符型
char
,因为单个字符串可当作字符处理 - 如果遍历字符串是三种左括号,那就将对应右括号入栈
- 如果是右三种括号,判断栈是否为空或者是否与栈顶相等,不满足则出栈
- 如果
empty
方法为真,足以说明该字符串满足括号匹配
2、AB4 逆波兰表达式求值
题目链接:逆波兰表达式求值
题目描述:
2.1、解题思路
所谓逆波兰表达式就是:操作数在前,操作符在后, 2 - 1
相当于2 1 -
,采用辅助栈:
- 遍历字符串,如果对应的字符不等于四则运算符,将操作数入栈
- 如果字符为四则运算符,取栈顶后出栈再取栈顶,根据运算符将不同运算结果入栈
- 遍历结束后的栈顶元素就是逆波兰表达式最终结果
2.2、代码实现与解析
本题源码:
class Solution { public: /** * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可 * * * @param s string字符串vector * @return int整型 */ int evalRPN(vector<string>& s) { stack<int> stk; for (int i = 0; i < s.size(); i++) { if (s[i] == "+" || s[i] == "-" || s[i] == "*" || s[i] == "/") { int x1 = stk.top(); stk.pop(); int x2 = stk.top(); stk.pop(); if (s[i] == "+") stk.push(x1 + x2); if (s[i] == "-") stk.push(x2 - x1); if (s[i] == "*") stk.push(x1 * x2); if (s[i] == "/") stk.push(x2 / x1); } else { stk.push(stoi(s[i])); } } return stk.top(); }};
重要注释:
- 非四则运算符的话将字符串转化为整型后入栈,
stoi
可用于将字符型转化为整型 - 取栈顶后需要出栈一次才能再次取栈顶,这样才是两个连续的操作数
- 进行减法和除法时要让第二个栈顶在前,记住栈先进后出的特点
3、AB5 点击消除
题目链接:点击消除
题目描述:
3.1、解题思路
简单来说就是将相邻且相同的字符消除,采用辅助栈即可:
- 辅助栈空时直接入栈
- 后续遍历时若栈顶元素与之相等就出栈,不等就入栈
- 判断最终栈的情况:
- 若栈空,输出0
- 若栈不空,输出栈内字符串
3.2、代码实现与解析
本题源码:
#include #include using namespace std;int main() { string s, res; cin >> s; stack<char>stk; for (int i = 0; i < s.size(); i++) { if (!stk.empty() && stk.top() == s[i]) { stk.pop(); } else { stk.push(s[i]); } } if (stk.empty()) cout << 0; else { while (!stk.empty()) { res = stk.top() + res; stk.pop(); } cout << res; }}
重要注释:
- 此题是自己设计输入输出,使用辅助栈需要包含头文件:
- 由于栈是先进后出,因此采用字符串拼接:
res = stk.top() + res
来得到正序字符串 - 核心点在于入栈和出栈的条件,这点掌握就没问题了
欢迎大家订阅专栏,学习算法思想,合理利用牛客网,百炼成神!